Joint Models for Longitudinal and Time-to-Event Data

Joint Models for Longitudinal and Time-to-Event Data

In longitudinal studies it is often of interest to investigate how a marker that is repeatedly measured in time is associated with a time to an event of interest, e.g., prostate cancer studies where longitudinal PSA level measurements are collected in conjunction with the time-to-recurrence. Joint Models for Longitudinal and Time-to-Event Data: With Applications in R provides a full treatment of random effects joint models for longitudinal and time-to-event outcomes that can be utilized to analyze such data. The content is primarily explanatory, focusing on applications of joint modeling, but sufficient mathematical details are provided to facilitate understanding of the key features of these models. All illustrations put forward can be implemented in the R programming language via the freely available package JM written by the author. All the R code used in the book is available at: http://jmr.r-forge.r-project.org/
Al momento non disponibile, ordinabile in 3 settimane circa

Dettagli Libro

Libri che ti potrebbero interessare

Codice civile 2010
Codice civile 2010

Pietro Perlingieri, Bruno Troisi
Gli amuleti di D'Annunzio
Gli amuleti di D'Annunzio

Antonio Bortolotti, Attilio Mazza
Racconti e poesie
Racconti e poesie

Seccia Attilio
Ambienti letali
Ambienti letali

Giuseppe Di Febo
Triathlon. Il manuale
Triathlon. Il manuale

Guido Esposito, Cristiano Caporali
Contro l'Unità d'Italia. Articoli scelti
Contro l'Unità d'Italia. Articoli scelt...

P. Goglio, Pierre-Joseph Proudhon